首页>
根据【检索词:机器学习】搜索到相关结果 2 条
-
基于机器学习方法的航空消耗件需求自适应预测
-
作者:
付维方
穆彩虹
刘英杰
来源:
科学技术与工程
年份:
2022
文献类型 :
期刊
关键词:
航空消耗件
需求模式识别
SOFM神经网络
动态预测
-
描述:
企业状态不稳定性、消耗件故障规律不确定性及需求特征的动态性,特别是新冠疫情期间航空公司航班的大量停飞和逐渐恢复导致固定单一需求预测方法存在较大偏差。基于平均绝对误差和均方误差进行不同需求模式预测方法筛选,构建自组织特征映射网(self-organizing feature map, SOFM)对需求时间序列聚类,提出不同聚类模式和预测方法映射关系并实现数据与方法动态自适应。此自适应预测框架能够实现不同航材需求模式识别、多预测方法决策及同一航材多阶段动态预测。通过某航空公司实例验证表明该自适应框架具有较好的应用效果,适用于各类型的消耗备件需求预测。
-
基于机器学习方法的航空消耗件需求自适应预测
-
作者:
付维方
穆彩虹
刘英杰
来源:
科学技术与工程
年份:
2022
文献类型 :
期刊
关键词:
航空消耗件
需求模式识别
SOFM神经网络
动态预测
-
描述:
企业状态不稳定性、消耗件故障规律不确定性及需求特征的动态性,特别是新冠疫情期间航空公司航班的大量停飞和逐渐恢复导致固定单一需求预测方法存在较大偏差。基于平均绝对误差和均方误差进行不同需求模式预测方法筛选,构建自组织特征映射网(self-organizing feature map, SOFM)对需求时间序列聚类,提出不同聚类模式和预测方法映射关系并实现数据与方法动态自适应。此自适应预测框架能够实现不同航材需求模式识别、多预测方法决策及同一航材多阶段动态预测。通过某航空公司实例验证表明该自适应框架具有较好的应用效果,适用于各类型的消耗备件需求预测。