首页>
根据【关键词:YOLO,深度学习,目标检测,叶片凸台,胶囊网络】搜索到相关结果 1 条
-
基于注意力机制的航空图像旋转框目标检测
-
作者:
常洪彬
李文举
李文辉
来源:
吉林大学学报(理学版)
年份:
2022
文献类型 :
期刊
关键词:
航空图像
注意力机制
目标检测
深度学习
-
描述:
针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像目标检测模型.该模型首先采用RetinaNet作为基线模型,在原有检测器结构的基础上,增加额外的角度参数以适应旋转框目标检测;然后提出一个新的通道语义提取注意力模块(CSE),用于捕获全局语义信息和通道关系,并预测粗糙包围盒与分类分数;最后采用特征对齐和改进的Fast R-CNN检测头进行精细化处理,进一步提升检测精度,得到最后的分类和回归结果.实验结果表明,该方法在公开航空遥感数据集DOTA上的检测精度达到77.71%,优于其他先进的旋转框目标检测方法.