首页>
根据【关键词:飞行员,认知负荷,机器学习,便携式心电监测设备,神经网络,航空安全】搜索到相关结果 4 条
-
基于XGBoost的航空器动态滑行时间预测方法研究
-
作者:
赵征
冯事成
宋梅雯
胡莉
陆莎
来源:
航空工程进展
年份:
2022
文献类型 :
期刊
关键词:
机器学习
XGBoost
动态滑行时间
航空运输
样本量
-
描述:
对航空器进港和离港滑行时间进行精确的动态预测,可以有效提升机场的运行效率。首次提出基于XGBoost的航空器动态滑行时间预测方法,该方法首先通过分析影响机场滑行时间的各类因素,构建可变滑行时间预测的关键特征指标;然后选取XGBoost算法建立可变滑行时间预测模型,对模型的关键输入参数进行测试调整;最后将XGBoost算法与随机森林和支持向量回归算法的预测效果进行对比。同时,首次剖析样本数据量与滑行时间预测精度的关联,并以广州白云国际机场为分析对象进行实验。结果表明:采用XGBoost算法,进/离港滑行时间的预测精度分别达到了94.1%和96.6%,优于主流算法随机森林和支持向量回归;且实现白云机场动态滑行时间的精确和稳定预测所需样本量在32 000条(含)以上。
-
基于XGBoost的航空器动态滑行时间预测方法研究
-
作者:
赵征
冯事成
宋梅雯
胡莉
陆莎
来源:
航空工程进展
年份:
2022
文献类型 :
期刊
关键词:
机器学习
XGBoost
动态滑行时间
航空运输
样本量
-
描述:
对航空器进港和离港滑行时间进行精确的动态预测,可以有效提升机场的运行效率。首次提出基于XGBoost的航空器动态滑行时间预测方法,该方法首先通过分析影响机场滑行时间的各类因素,构建可变滑行时间预测的关键特征指标;然后选取XGBoost算法建立可变滑行时间预测模型,对模型的关键输入参数进行测试调整;最后将XGBoost算法与随机森林和支持向量回归算法的预测效果进行对比。同时,首次剖析样本数据量与滑行时间预测精度的关联,并以广州白云国际机场为分析对象进行实验。结果表明:采用XGBoost算法,进/离港滑行时间的预测精度分别达到了94.1%和96.6%,优于主流算法随机森林和支持向量回归;且实现白云机场动态滑行时间的精确和稳定预测所需样本量在32 000条(含)以上。
-
基于神经网络的飞机关键结构载荷预测方法研究
-
作者:
薛海峰
张彦军
宁宇
来源:
航空工程进展
年份:
2025
文献类型 :
期刊
关键词:
视情维修
神经网络
飞行参数
载荷预测
多元线性回归
-
描述:
基于神经网络的飞机关键结构载荷预测方法研究
-
睡眠剥夺在飞行员认知决策领域的研究探讨
-
作者:
初建杰
俱雅芳
王磊
陈彦蒿
来源:
航空工程进展
年份:
2020
文献类型 :
期刊
关键词:
认知
飞行员
执行功能
睡眠剥夺
-
描述:
随着航空技术的不断进步和发展,飞机单程长距离飞行的技术难题正在解决,在长时飞行复杂变化环境和高认知负荷情况下,睡眠剥夺对飞行员的认知损害存在明显的影响。本文从睡眠剥夺对主体认知机能的影响分析切入