首页>
根据【关键词:进排气故障,Transformer,交叉注意力,航空活塞发动机,卷积神经网络(CNN)】搜索到相关结果 3 条
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2017
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2017
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
活塞发动机航空润滑油适航性能验证技术研究
-
作者:
曾萍
杨智渊
汪必耀
钱璟
夏祖西
来源:
润滑与密封
年份:
2017
文献类型 :
期刊
关键词:
台架试验
润滑油
航空活塞发动机
适航
-
描述:
在SAE J1899和SAE J1966的基础上,分析国外活塞发动机航空润滑油适航审定技术验证的试验方法和步骤,包括润滑油物理化学性能、稳定性、材料相容性、地面单缸台架、全尺寸台架试验和飞行试验评估方法及步骤,为我国民航开展活塞发动机润滑油性能检测和研究工作,以及国产活塞发动机润滑油的适航审定提供技术支持。