首页>
根据【关键词:空中交通管理,机器学习,特征重要度,随机森林,进近飞行时间预测】搜索到相关结果 2 条
-
基于RF-SVR的燃油计量装置性能衰退检测和剩余寿命估计方法
-
作者:
来晨阳
郭迎清
于华锋
来源:
航空动力学报
年份:
2019
文献类型 :
期刊
关键词:
支持向量回归
随机森林
健康管理
剩余使用寿命
性能衰退
发动机燃油系统
-
描述:
为了实现航空发动机燃油系统的安全状态监测和健康管理,开展了燃油系统性能衰退检测和剩余使用寿命估计方面的研究。以燃油系统燃油计量装置为例,分析了其主要的性能衰退模式,设计了基于电流-速度数据的健康指标(HIs)选取方案,并考虑环境及模型参数不确定性,进行模型不确定性仿真,基于健康数据与性能衰退数据间的马氏距离对部件性能衰退进行检测。提出了基于随机森林-支持向量回归(RFSVR)的剩余使用寿命(RUL)估计方法,利用通过RF特征选择优化的SVR模型实现部件RUL估计。最后基于某型民用涡扇发动机机械液压模型仿真数据对该方法进行了验证,结果表明:该方法的性能衰退检测虚警率及漏报率低于2%,RUL估计误差低于3%,可为航空发动机燃油系统的预测性维护提供参考。
-
基于航空发动机工况的叶尖间隙智能预测方法
-
作者:
杨阳
张建超
项洋
陆海鹰
来源:
航空动力学报
年份:
2023
文献类型 :
期刊
关键词:
叶尖间隙
特征提取
机器学习
零维仿真
空气系统
-
描述:
在实际工程中保持航空发动机高效运行的有效措施之一是应用叶尖间隙主动控制技术,其前提是建立精确的叶尖间隙模型以实现叶尖间隙预测。建立叶尖间隙的简化物理模型和数学模型,将叶尖间隙计算转化为热变形与传热问题,通过机器学习模型对发动机工况参数进行特征提取,利用有效特征求解传热问题的边界,从而实现基于发动机工况参数快速预测实时叶尖间隙。机器学习模型的十折交叉验证集的平均准确率为98.9%,叶尖间隙模型的验证误差为4.3%,得到了不同工况下的叶尖间隙计算结果和冷气流量大小变化规律,计算耗时小于0.03s。