首页>
根据【关键词:机器学习,梅尔倒谱系数,自编码器,飞机类型识别,联合特征提取】搜索到相关结果 1 条
-
基于航空发动机工况的叶尖间隙智能预测方法
-
作者:
杨阳
张建超
项洋
陆海鹰
来源:
航空动力学报
年份:
2023
文献类型 :
期刊
关键词:
叶尖间隙
特征提取
机器学习
零维仿真
空气系统
-
描述:
在实际工程中保持航空发动机高效运行的有效措施之一是应用叶尖间隙主动控制技术,其前提是建立精确的叶尖间隙模型以实现叶尖间隙预测。建立叶尖间隙的简化物理模型和数学模型,将叶尖间隙计算转化为热变形与传热问题,通过机器学习模型对发动机工况参数进行特征提取,利用有效特征求解传热问题的边界,从而实现基于发动机工况参数快速预测实时叶尖间隙。机器学习模型的十折交叉验证集的平均准确率为98.9%,叶尖间隙模型的验证误差为4.3%,得到了不同工况下的叶尖间隙计算结果和冷气流量大小变化规律,计算耗时小于0.03s。