关键词
基于注意力机制和CNN-BiLSTM模型的航空发动机剩余寿命预测
作者: 张加劲   来源: 电子测量与仪器学报 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余寿命   双向长短期记忆网络  
描述: 航空发动机作为飞机的主要动力源,其可靠性是保证飞机安全的关键。剩余使用寿命预测对于提高航空发动机的可用性和降低其寿命周期成本具有重要意义。针对现有的预测算法存在对航空发动机多维数据特征提取不足的问题
基于注意力机制和CNN-BiLSTM模型的航空发动机剩余寿命预测
作者: 张加劲   来源: 电子测量与仪器学报 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余寿命   双向长短期记忆网络  
描述: 航空发动机作为飞机的主要动力源,其可靠性是保证飞机安全的关键。剩余使用寿命预测对于提高航空发动机的可用性和降低其寿命周期成本具有重要意义。针对现有的预测算法存在对航空发动机多维数据特征提取不足的问题
基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法
作者: 高峰   曲建岭   袁涛   高峰娟   来源: 电子测量与仪器学报 年份: 2019 文献类型 : 期刊 关键词: 航空发动机   长短时记忆网络   寿命预测   深度学习   差分时域特征  
描述: 深度学习理论的基础上,着重考虑不同传感器之间的参数关系,引入差分时域特征扩充特征集,构建了基于长短时记忆网络的寿命预测模型DTF-LSTM。在C-MAPSS数据集上的实验结果表明,该算法相较于其他深度学习算法具有更低的均方根误差(RMSE)值,可以有效实现发动机剩余寿命预测
基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法
作者: 高峰   曲建岭   袁涛   高峰娟   来源: 电子测量与仪器学报 年份: 2019 文献类型 : 期刊 关键词: 航空发动机   长短时记忆网络   寿命预测   深度学习   差分时域特征  
描述: 深度学习理论的基础上,着重考虑不同传感器之间的参数关系,引入差分时域特征扩充特征集,构建了基于长短时记忆网络的寿命预测模型DTF-LSTM。在C-MAPSS数据集上的实验结果表明,该算法相较于其他深度学习算法具有更低的均方根误差(RMSE)值,可以有效实现发动机剩余寿命预测
< 1
Rss订阅