首页>
根据【关键词:航空发动机轴承,支持向量机,主成分分析,轴承诊断,粒子群算法】搜索到相关结果 163 条
-
基于多种预测算法的飞机故障预测效果研究
-
作者:
朱兴动
章思宇
宋建华
来源:
兵工自动化
年份:
2020
文献类型 :
期刊
关键词:
支持向量机
Fisher判别法
随机森林
Kappa系数
逻辑回归
故障预测
-
描述:
为大幅提高飞机的维修故障预测精度,在充分研究Fisher判别法、逻辑回归、随机森林和支持向量机4种算法的基础上,使用某型飞机故障维修记录数据作为基础数据集,在R平台上实现这4种算法,以分析比较4种算法在故障预测上的效果差异。结果表明,支持向量机的预测效果最好。
-
航空电子设备故障预测特征参数提取方法研究
-
作者:
陈华坤
章卫国
史静平
何启志
占正勇
来源:
西北工业大学学报
年份:
2017
文献类型 :
期刊
关键词:
故障预测和健康管理
维数估计
支持向量机
特征提取
综合模块化航电系统
极大似法
DC变换器
降噪自编码神经网络
DC
-
描述:
故障特征提取是航空电子设备故障预测的关键技术,对于少量测试点的电子设备可以采用小波变换、傅里叶变换、经验模态分解等方法提取故障特征,但是由于航空电子设备属于大规模集成电路,测试点比较多,采用上述方法提取的故障特征可能相互混叠并且数量比较大会严重影响故障预测精度及速度,因此如何从众多故障信息中提取故障特征是一个难题。文章提出基于极大似然和降噪自编码神经网络方法从大量故障信息中提取故障特征。首先,使用极大似然法分析由多个测试点提取的故障信息和历史退化过程的故障信息组成的高维数据集,估计需要提取故障特征的维数;然后使用降噪自编码神经网络方法将高维故障信息映射到指定维数的数据空间,从中提取关键的故障特征,去除冗余信息;最后,以航空电子系统电源模块为例,采用新方法提取故障特征,分别通过将故障特征可视化和使用故障特征进行健康评估来验证其有效性。
-
航空电子设备故障预测特征参数提取方法研究
-
作者:
陈华坤
章卫国
史静平
何启志
占正勇
来源:
西北工业大学学报
年份:
2017
文献类型 :
期刊
关键词:
故障预测和健康管理
维数估计
支持向量机
特征提取
综合模块化航电系统
极大似法
DC变换器
降噪自编码神经网络
DC
-
描述:
故障特征提取是航空电子设备故障预测的关键技术,对于少量测试点的电子设备可以采用小波变换、傅里叶变换、经验模态分解等方法提取故障特征,但是由于航空电子设备属于大规模集成电路,测试点比较多,采用上述方法提取的故障特征可能相互混叠并且数量比较大会严重影响故障预测精度及速度,因此如何从众多故障信息中提取故障特征是一个难题。文章提出基于极大似然和降噪自编码神经网络方法从大量故障信息中提取故障特征。首先,使用极大似然法分析由多个测试点提取的故障信息和历史退化过程的故障信息组成的高维数据集,估计需要提取故障特征的维数;然后使用降噪自编码神经网络方法将高维故障信息映射到指定维数的数据空间,从中提取关键的故障特征,去除冗余信息;最后,以航空电子系统电源模块为例,采用新方法提取故障特征,分别通过将故障特征可视化和使用故障特征进行健康评估来验证其有效性。