按文献类别分组
按栏目分组
关键词
基于PCA-BP的航空发动机大修周期预测方法
作者: 符式峰   贾晓亮   安磊   常笑   来源: 航空计算技术 年份: 2022 文献类型 : 期刊 关键词: 主成分分析   航空发动机   大修周期   BP神经网络  
描述: 航空发动机大修具有影响因素多、因素之间耦合关系复杂等特点,针对数据驱动的航空发动机大修周期预测,提出基于主成分分析和反向传播神经网络(PCA-BP)的航空发动机大修周期预测方法。在分析影响航空发动机大修周期主要因素的基础上,采用PCA方法得到影响航空发动机大修周期的主成分因素,并将其作为BP神经网络的输入。基于某型航空发动机大修数据对PCA-BP模型进行训练和测试,并与BP神经网络模型进行比较,结果表明PCA-BP模型预测精度更高,验证了方法的有效性。
< 1
Rss订阅