按文献类别分组
按栏目分组
按年份分组
关键词
基于智能算法优化BP的航空器滑出时间预测
作者: 朱晓波   贾鑫磊   王楚皓   来源: 科学技术与工程 年份: 2023 文献类型 : 期刊 关键词: 机场场面运行效率   粒子群优化   麻雀搜索算法   BP神经网络   滑出时间  
描述: 滑出时间是评估大型机场场面运行效率的主要性能指标,科学准确地预测离港航空器的滑出时间,对于提升场面运行效率至关重要。首先,分析了航空器滑出时间影响因素及相关性,构建了基于反向传播(back propagation, BP)神经网络的航空器滑出时间预测模型。针对BP神经网络存在对初始权值和阈值敏感、准确性和稳定性欠佳等缺点,分别采用粒子群优化(particle swarm optimization, PSO)算法和麻雀搜索算法(sparrow search algorithm, SSA)获取BP神经网络的最优权值和阈值,并采用中国中南某枢纽机场2周的实际运行数据对智能算法优化后的预测模型进行了验证。结果表明:滑出时间与半小时平均滑出时间、起飞队列长度、同时段滑行的离港航空器数量均有强相关性,与同时段滑入的进港航空器数量中度相关,与滑行距离和经过冲突热点区域个数相关性较弱;考虑强相关和中度相关影响因素的4元组合预测模型的预测结果最佳;智能优化算法通过获取神经网络的局部最优权重和阈值,可有效地提升航空器滑出时间预测结果的精度,但运算过程耗时也更长;基于PSO优化后的BP神经网络预测结果较优化前的平均绝对百分比误差(mean absolute percentage error, MAPE)提升了1.13%,平均绝对误差(mean absolute error, MAE)减少了4.48 s,均方根误差(root mean squared error, RMSE)减少了4.68 s;基于SSA优化后的BP神经网络预测结果较优化前的MAPE提升了3.05%,MAE减少了16.55 s, RMSE减少了14.31 s。
不同背景下航空公司效率评估对比
作者: 朱晓波   来源: 环境工程 年份: 2022 文献类型 : 期刊 关键词: 效率评估  
描述: 随着经济全球化步伐的加快和地区间交流的增加,航空业取得了瞩目成绩,但因航空碳排放量增长速度之快,碳排放问题越来越引起社会的广泛关注。根据国际民航组织提出的系列减排措施和战略要求,航空公司竭力提升自身效率成为其砥砺前行的不二选择。有鉴于此,仔细研究不同背景下航空公司效率评估,并在此基础上逐步完善航空碳排放建模,通过效率对比进一步探讨航空碳排放政策对航空公司的影响,这样才能更好地促进航空公司的长期可持续发展。
离港航空器滑出时间的BP神经网络预测模型
作者: 夏正洪   贾鑫磊   来源: 航空工程进展 年份: 2022 文献类型 : 期刊 关键词: 离港航空器   BP神经网络   滑出时间预测   滑出时间影响因素   1小时内平均滑出时间  
描述: 机场2周实际运行数据对模型进行验证,并以均方根误差、平均绝对误差和平均绝对误差百分比检验预测结果的准确性。结果表明:同时段推出航空器数量、同时段起飞航空器数量、同时段落地航空器数量、1小时内平均滑出时间
离港航空器滑出时间的BP神经网络预测模型
作者: 夏正洪   贾鑫磊   来源: 航空工程进展 年份: 2022 文献类型 : 期刊 关键词: 离港航空器   BP神经网络   滑出时间预测   滑出时间影响因素   1小时内平均滑出时间  
描述: 机场2周实际运行数据对模型进行验证,并以均方根误差、平均绝对误差和平均绝对误差百分比检验预测结果的准确性。结果表明:同时段推出航空器数量、同时段起飞航空器数量、同时段落地航空器数量、1小时内平均滑出时间
< 1
Rss订阅