关键词
基于深度神经网络的遥感影像飞机目标检测与型号识别方法
作者: 刘思婷   来源: 兰州交通大学 年份: 2022 文献类型 : 学位论文 关键词: 关键点检测   R   CNN   型号识别   Mask   迁移学习   飞机目标检测  
描述: 基于深度神经网络的遥感影像飞机目标检测与型号识别方法
基于本体驱动的航空情报表格信息结构化研究
作者: 赖欣     李思宁     梁昌盛     张恒嫣   来源: 计算机科学 年份: 2024 文献类型 : 期刊 关键词: 航空情报   随机森林   条件随机场   AI   命名实体识别   本体   Document  
描述: 的描述;其次,利用Document AI对表格文档的布局结构进行研究与预处理,并利用随机森林算法与条件随机场模型进行特征实体提取验证与分析。实验结果表明,所提方法能够有效提取航空情报表格中的特征实体,为航空情报领域静态数据深入挖掘提供参考。
基于本体驱动的航空情报表格信息结构化研究
作者: 赖欣     李思宁     梁昌盛     张恒嫣   来源: 计算机科学 年份: 2024 文献类型 : 期刊 关键词: 航空情报   随机森林   条件随机场   AI   命名实体识别   本体   Document  
描述: 的描述;其次,利用Document AI对表格文档的布局结构进行研究与预处理,并利用随机森林算法与条件随机场模型进行特征实体提取验证与分析。实验结果表明,所提方法能够有效提取航空情报表格中的特征实体,为航空情报领域静态数据深入挖掘提供参考。
基于改进YOLOv4算法的遥感图像飞机目标检测
作者: 王惠中     文学   来源: 计算机与数字工程 年份: 2024 文献类型 : 期刊 关键词: 遥感图像   特征融合   目标检测   YOLOv4  
描述: 针对在遥感图像上对飞机目标检测的精度低问题,论文通过对PANet特征融合网络结构的加深使得YOLOv4算法对小目标的检测更加敏感,进而提高算法的平均检测精度;另外,利用K-means++算法产生
基于改进YOLOv8的遥感图像飞机目标检测研究
作者: 张德银     赵志恒     谢逸戈     黄少晗   来源: 自动化应用 年份: 2024 文献类型 : 期刊 关键词: 遥感图像   目标检测   飞机目标   YOLOv8算法  
描述: 为解决遥感图像飞机目标检测时易出现检测精度低与漏检误检等问题,提出了一种基于YOLOv8算法的遥感图像飞机目标检测改进算法。首先,将坐标注意力机制模块嵌入卷积模块中,使其能提取复杂背景下的飞机小目标
基于生成对抗网络的半监督遥感图像飞机检测
作者: 陈国炜   刘磊   郭嘉逸   潘宗序   胡文龙   来源: 中国科学院大学学报 年份: 2021 文献类型 : 期刊 关键词: 生成对抗网络   目标检测   半监督学习  
描述: 遥感图像上的飞机目标检测是一件极富挑战性的工作,吸引了广大研究者的兴趣。基于人工神经网络的方法是当前遥感图像飞机目标检测的主流方法,这类方法要求人工标记大量的数据用于训练。对训练图像的人工标注工作
基于生成对抗网络的半监督遥感图像飞机检测
作者: 陈国炜   刘磊   郭嘉逸   潘宗序   胡文龙   来源: 中国科学院大学学报 年份: 2021 文献类型 : 期刊 关键词: 生成对抗网络   目标检测   半监督学习  
描述: 遥感图像上的飞机目标检测是一件极富挑战性的工作,吸引了广大研究者的兴趣。基于人工神经网络的方法是当前遥感图像飞机目标检测的主流方法,这类方法要求人工标记大量的数据用于训练。对训练图像的人工标注工作
基于生成对抗网络的半监督遥感图像飞机检测
作者: 陈国炜   刘磊   郭嘉逸   潘宗序   胡文龙   来源: 中国科学院大学学报 年份: 2021 文献类型 : 期刊 关键词: 生成对抗网络   目标检测   半监督学习  
描述: 遥感图像上的飞机目标检测是一件极富挑战性的工作,吸引了广大研究者的兴趣。基于人工神经网络的方法是当前遥感图像飞机目标检测的主流方法,这类方法要求人工标记大量的数据用于训练。对训练图像的人工标注工作
基于生成对抗网络的半监督遥感图像飞机检测
作者: 陈国炜   刘磊   郭嘉逸   潘宗序   胡文龙   来源: 中国科学院大学学报 年份: 2021 文献类型 : 期刊 关键词: 生成对抗网络   目标检测   半监督学习  
描述: 遥感图像上的飞机目标检测是一件极富挑战性的工作,吸引了广大研究者的兴趣。基于人工神经网络的方法是当前遥感图像飞机目标检测的主流方法,这类方法要求人工标记大量的数据用于训练。对训练图像的人工标注工作
基于YOLOv4的航空发动机叶片凸台目标检测
作者: 陈为   钟欣童   张婧   李泽辰   来源: 计算机仿真 年份: 2022 文献类型 : 期刊 关键词: 数据增强   目标检测   叶片凸台检测   聚类分析  
描述: 的适应对凸台检测中小目标、结构复杂的特点,通过聚类分析的方法调整先验框尺寸,同时对原始数据集使用Mosaic方法进行数据增强。实验结果表明,改进后的YOLOv4模型在检测精度上提高了15.85%,召回率提高了21%,平均交并比可达0.75,检测性能优于在同一数据集中使用的SSD目标检测算法。
< 1 2 3 4 ... 22 23 24
Rss订阅