按文献类别分组
按栏目分组
关键词
基于Trans/Attention的飞行区航空器监视数据融合方法
作者: 王兴隆   尹昊   丁俊峰   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 场面监视雷达   注意力机制   Transformer   数据融合   广播式自动相关监视  
描述: 结果表明,该方法有效降低了单一监视源的监视误差,且融合效果优于基于注意力机制的长短期记忆网络、循环神经网络和扩展卡尔曼滤波融合方法,平均绝对误差分别提升了2.20%、14.32%和33.94%。
基于深度学习域适应的飞机结冰图像气泡提取方法
作者: 赵红梅     彭博     周志宏     易贤   来源: 南京航空航天大学学报 年份: 2024 文献类型 : 期刊 关键词: 气泡提取   U   Attention   图像分割   域适应   动态结冰   Net  
描述: 针对采用深度学习方法提取结冰显微图像中的气泡需要大量标注数据,但人工标注气泡任务较为困难的问题,提出了一种基于风格迁移网络CycleGAN和图像分割网络Attention U-Net的域适应提取方法。该方法通过程序模拟气泡形态生成的图像为源域,结冰显微图像为目标域,通过CycleGAN将源域图像转为目标域风格,采用风格转换后的源域数据集训练Attention U-Net网络。通过对比实验对无标注结冰图像和少量标注图像两种情况进行验证。实验结果表明,在无标注图像的情况下,可实现无监督的结冰显微图像的气泡提取;在只有少量标注图像的情况下,该方法可实现更精确的气泡提取。
基于新型深度神经网络的民机表面缺陷识别
作者: 张德银   陈从翰   黄选红   徐志强   来源: 计算技术与自动化 年份: 2020 文献类型 : 期刊 关键词: 深度神经网络   表面缺陷识别   Inception   Net   残差   民航飞机  
描述: 为解决机务人员依靠经验来对民航飞机的表面缺陷进行识别时易发生误判的问题,开发了一种用于民机表面的缺陷识别的结合Inception-net和残差模块的新型深度神经网络。首先,通过对各机场的在修飞机表面缺陷进行采样建立数据集,手段包括使用图像处理修复不合格图像、使用数据增强缓解数据类别不平衡、使用立方卷积插值法降采样保留图像特征等图像预处理操作。然后在自建的数据集上对新型深度神经网络与其他神经网络进行对比测试。实验结果表明,新型神经网络在较少的参数下能够达到最深的网络深度,且在自建数据集的测试集上的识别率和查全率分别为74.23%和62.29%,优于进行对比的其他网络。说明在一定程度上该网络能够有效用于民机表面缺陷识别工作中。
大型机场滑行道航空器交通流特性仿真
作者: 薛清文   陆键   姜雨   来源: 北京航空航天大学学报 年份: 2019 文献类型 : 期刊 关键词: 元胞传输模型(CTM)   交通流   相态演变   滑行道   Net   Logo  
描述: 交通流在自由流、同步流和阻塞流3种相态中演变,其中在同步流相态中,随着密度增加,流量从0.15降至0.10架次/min,速度从20降至7.64m/s,说明流量和速度参数对于密度的变化十分敏感。当离场率与
大型机场滑行道航空器交通流特性仿真
作者: 薛清文   陆键   姜雨   来源: 北京航空航天大学学报 年份: 2019 文献类型 : 期刊 关键词: 元胞传输模型(CTM)   交通流   相态演变   滑行道   Net   Logo  
描述: 交通流在自由流、同步流和阻塞流3种相态中演变,其中在同步流相态中,随着密度增加,流量从0.15降至0.10架次/min,速度从20降至7.64m/s,说明流量和速度参数对于密度的变化十分敏感。当离场率与
基于新型深度神经网络的民机表面缺陷识别
作者: 张德银   陈从翰   黄选红   徐志强   来源: 计算技术与自动化 年份: 2020 文献类型 : 期刊 关键词: 深度神经网络   表面缺陷识别   Inception   Net   残差   民航飞机  
描述: 为解决机务人员依靠经验来对民航飞机的表面缺陷进行识别时易发生误判的问题,开发了一种用于民机表面的缺陷识别的结合Inception-net和残差模块的新型深度神经网络。首先,通过对各机场的在修飞机表面缺陷进行采样建立数据集,手段包括使用图像处理修复不合格图像、使用数据增强缓解数据类别不平衡、使用立方卷积插值法降采样保留图像特征等图像预处理操作。然后在自建的数据集上对新型深度神经网络与其他神经网络进行对比测试。实验结果表明,新型神经网络在较少的参数下能够达到最深的网络深度,且在自建数据集的测试集上的识别率和查全率分别为74.23%和62.29%,优于进行对比的其他网络。说明在一定程度上该网络能够有效用于民机表面缺陷识别工作中。
一种基于Transformer编码器与LSTM的飞机轨迹预测方法
作者: 李明阳     鲁之君     曹东晶     曹世翔   来源: 航天返回与遥感 年份: 2024 文献类型 : 期刊 关键词: Transformer   Encoder   轨迹预测   Transformer编码器   飞机目标   神经网络   LSTM模型  
描述: 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。
基于航空图像的目标检测算法Trans_YOLOv5
作者: 文青     伍欣     敖斌     李宽     殷建平   来源: 计算机技术与发展 年份: 2024 文献类型 : 期刊 关键词: 航空图像   Transformer   YOLOv5   圆形平滑标签   小目标检测   Swin  
描述: 能力,使网络模型更加关注于待检测的目标对象。在DOTAv2.0航空图像数据集上的实验结果验证了所提方法的有效性,检测结果达到60.98%mAP,与原YOLOv5算法检测结果相比提高10.85百分点,与官网公布的竞赛最佳结果相比提高2.01百分点。
改进的YOLOv5s遥感影像机场场面飞机小目标识别
作者: 张新君     赵春霖   来源: 电光与控制 年份: 2024 文献类型 : 期刊 关键词: 坐标注意力机制   遥感影像   Transformer   YOLOv5s   小目标检测   Swin  
描述: 小目标检测识别测试实验,改进后的YOLOv5s网络的mAP值为0.837 5,比YOLOv5s网络模型提高了0.022 5。实验结果表明,改进后的YOLOv5s网络模型对比YOLO系列网络和EfficientDet模型有效地提高了识别准确率、召回率以及mAP值,并且在训练时间上也比YOLOv5s减少了1/12。
EGMT-CD: Edge-Guided Multimodal Transformers Change Detection from Satellite and Aerial Images
作者: Yunfan   Xiang     Xiangyu   Tian     Yue   Xu     Xiaokun   Guan     Zhengchao   Chen   来源: Remote Sensing 年份: 2023 文献类型 : 期刊 关键词: sensing   detection   images   edge   Transformer   feature   change   remote   alignment   heterogeneous  
描述: Change detection from heterogeneous satellite and aerial images plays a progressively important role in many fields, including disaster assessment, urban construction, and land use monitoring. Currently, researchers have mainly devoted their attention to change detection using homologous image pairs and achieved many remarkable results. It is sometimes necessary to use heterogeneous images for change detection in practical scenarios due to missing images, emergency situations, and cloud and fog occlusion. However, heterogeneous change detection still faces great challenges, especially using satellite and aerial images. The main challenges in satellite and aerial image change detection are related to the resolution gap and blurred edge. Previous studies used interpolation or shallow feature alignment before traditional homologous change detection methods, which ignored the high-level feature interaction and edge information. Therefore, we propose a new heterogeneous change detection model based on multimodal transformers combined with edge guidance. In order to alleviate the resolution gap between satellite and aerial images, we design an improved spatially aligned transformer (SP-T) with a sub-pixel module to align the satellite features to the same size of the aerial ones supervised by a token loss. Moreover, we introduce an edge detection branch to guide change features using the object edge with an auxiliary edge-change loss. Finally, we conduct considerable experiments to verify the effectiveness and superiority of our proposed model (EGMT-CD) on a new satellite–aerial heterogeneous change dataset, named SACD. The experiments show that our method (EGMT-CD) outperforms many previously superior change detection methods and fully demonstrates its potential in heterogeneous change detection from satellite–aerial images.
< 1 2 3
Rss订阅