按文献类别分组
关键词
基于稀疏降噪自编码神经网络的通用航空风险预测
作者: 于思璇   王华伟   来源: 系统工程与电子技术 年份: 2019 文献类型 : 期刊 关键词: 稀疏自编码   事故征候   风险预测   降噪  
描述: 神经网络的通用航空风险预测方法,稀疏降噪自编码模型(sparse de-noising auto-encoder,SDAE)可以学习相对稀疏简明的数据特征,更好地表达输入数据。利用收集到从2012年1月至
基于稀疏降噪自编码神经网络的通用航空风险预测
作者: 于思璇   王华伟   来源: 系统工程与电子技术 年份: 2019 文献类型 : 期刊 关键词: 稀疏自编码   事故征候   风险预测   降噪  
描述: 神经网络的通用航空风险预测方法,稀疏降噪自编码模型(sparse de-noising auto-encoder,SDAE)可以学习相对稀疏简明的数据特征,更好地表达输入数据。利用收集到从2012年1月至
基于稀疏降噪自编码神经网络的通用航空风险预测
作者: 于思璇   王华伟   来源: 系统工程与电子技术 年份: 2019 文献类型 : 期刊 关键词: 稀疏自编码   事故征候   风险预测   降噪  
描述: 神经网络的通用航空风险预测方法,稀疏降噪自编码模型(sparse de-noising auto-encoder,SDAE)可以学习相对稀疏简明的数据特征,更好地表达输入数据。利用收集到从2012年1月至
基于稀疏降噪自编码神经网络的通用航空风险预测
作者: 于思璇   王华伟   来源: 系统工程与电子技术 年份: 2019 文献类型 : 期刊 关键词: 稀疏自编码   事故征候   风险预测   降噪  
描述: 神经网络的通用航空风险预测方法,稀疏降噪自编码模型(sparse de-noising auto-encoder,SDAE)可以学习相对稀疏简明的数据特征,更好地表达输入数据。利用收集到从2012年1月至
基于鸟击事故征候预测的通用航空安全研究
作者: 熊明兰   王华伟   徐怡   付强   来源: 系统工程与电子技术 年份: 2020 文献类型 : 期刊 关键词: 安全   预测   通用航空   鸟击事故征候   长短期记忆(LSTM)  
描述: 通用航空作为民航运输的两翼之一,其安全水平直接影响民机系统的安全。目前对通航以及鸟击事故征候进行预测的研究十分少,本文根据收集到的美国从事通用航空活动发生鸟击事故征候安全状况数据(1990年1
基于鸟击事故征候预测的通用航空安全研究
作者: 熊明兰   王华伟   徐怡   付强   来源: 系统工程与电子技术 年份: 2020 文献类型 : 期刊 关键词: 安全   预测   通用航空   鸟击事故征候   长短期记忆(LSTM)  
描述: 通用航空作为民航运输的两翼之一,其安全水平直接影响民机系统的安全。目前对通航以及鸟击事故征候进行预测的研究十分少,本文根据收集到的美国从事通用航空活动发生鸟击事故征候安全状况数据(1990年1
基于LSTM分类器的航空发动机预测性维护模型
作者: 蔺瑞管   王华伟   车畅畅   倪晓梅   熊明兰   来源: 系统工程与电子技术 年份: 2022 文献类型 : 期刊 关键词: 二分类   长短期记忆网络   时间窗   故障预测与健康管理   预测性维护  
描述: 利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health management, PHM)的关键问题。针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network, LSTM)分类器的预测性维护模型。LSTM分类器通过门控单元对长时间序列信息进行充分筛选,并将有效信息用于时间序列预测。首先,采用滑动时间窗口制备训练样本。其次,将预处理后的样本输入LSTM,预测设备在特定时间窗口内的失效概率。然后,通过调整窗口大小,得到最优性能的二分类模型,以更好地适应预测维护需求。最后,利用美国航空航天局C-MAPSS数据集验证了该模型的有效性,相比于已有分类方法,其在剩余使用寿命分类方面更加准确。
基于LSTM分类器的航空发动机预测性维护模型
作者: 蔺瑞管   王华伟   车畅畅   倪晓梅   熊明兰   来源: 系统工程与电子技术 年份: 2022 文献类型 : 期刊 关键词: 二分类   长短期记忆网络   时间窗   故障预测与健康管理   预测性维护  
描述: 利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health management, PHM)的关键问题。针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network, LSTM)分类器的预测性维护模型。LSTM分类器通过门控单元对长时间序列信息进行充分筛选,并将有效信息用于时间序列预测。首先,采用滑动时间窗口制备训练样本。其次,将预处理后的样本输入LSTM,预测设备在特定时间窗口内的失效概率。然后,通过调整窗口大小,得到最优性能的二分类模型,以更好地适应预测维护需求。最后,利用美国航空航天局C-MAPSS数据集验证了该模型的有效性,相比于已有分类方法,其在剩余使用寿命分类方面更加准确。
基于LSTM分类器的航空发动机预测性维护模型
作者: 蔺瑞管   王华伟   车畅畅   倪晓梅   熊明兰   来源: 系统工程与电子技术 年份: 2022 文献类型 : 期刊 关键词: 二分类   长短期记忆网络   时间窗   故障预测与健康管理   预测性维护  
描述: 利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health management, PHM)的关键问题。针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network, LSTM)分类器的预测性维护模型。LSTM分类器通过门控单元对长时间序列信息进行充分筛选,并将有效信息用于时间序列预测。首先,采用滑动时间窗口制备训练样本。其次,将预处理后的样本输入LSTM,预测设备在特定时间窗口内的失效概率。然后,通过调整窗口大小,得到最优性能的二分类模型,以更好地适应预测维护需求。最后,利用美国航空航天局C-MAPSS数据集验证了该模型的有效性,相比于已有分类方法,其在剩余使用寿命分类方面更加准确。
基于LSTM分类器的航空发动机预测性维护模型
作者: 蔺瑞管   王华伟   车畅畅   倪晓梅   熊明兰   来源: 系统工程与电子技术 年份: 2022 文献类型 : 期刊 关键词: 二分类   长短期记忆网络   时间窗   故障预测与健康管理   预测性维护  
描述: 利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health management, PHM)的关键问题。针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network, LSTM)分类器的预测性维护模型。LSTM分类器通过门控单元对长时间序列信息进行充分筛选,并将有效信息用于时间序列预测。首先,采用滑动时间窗口制备训练样本。其次,将预处理后的样本输入LSTM,预测设备在特定时间窗口内的失效概率。然后,通过调整窗口大小,得到最优性能的二分类模型,以更好地适应预测维护需求。最后,利用美国航空航天局C-MAPSS数据集验证了该模型的有效性,相比于已有分类方法,其在剩余使用寿命分类方面更加准确。
< 1
Rss订阅